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1. Introduction 
         The concept of interval arithmetic was first suggested by Dwyer [1] in 1951. After developed by Moore 

[11 ], Moore and Yang [14 ]. Furthermore several authors have studied various aspects of the theory and 

applications of interval numbers in differential equations [14 ], [15 ], [16 ]. The sequence of interval numbers 

was first introduced by Chiao [21] and defined usual convergence.  Bounded and convergence sequences spaces 

of interval numbers were introduced by Sengonul and Eryilmaz [ ] and showed that these spaces are complete 

metric space.  

       A set consisting of closed interval of real numbers x  such that a x b   is called an interval number. A 

real interval can also be considered as a set. Denote the set of all real valued closed intervals by . Any member 

of is called closed interval and denoted by x . Thus  :x x a x b    . In [20], an interval number is 

closed subset of real line . 

         Let lx  and rx be the first and last points of the interval number x  respectively. For 1x  , 2x  , we have  

                         1x  = 2 1 2 1 2,
l l rrx x x x x   .  

                        1x  +  2 1 2 1 2:
l l rrx x x x x x x        

                       1 1:
l r

x x x x x       if  0.   

                            =  1 1:
r l

x x x x     if  0.   

 and 

1x . 2x       1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2: min . , . , . , . max . , . , . , .
l l l r r l r r l l l r r l r r

x x x x x x x x x x x x x x x x x x             The set of all 

interval numbers  is complete metric space under the metric defined by – 

                       1 2 1 2, max ,
l l r r

d x y x x x x    (see [18]) . 
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          Let us consider the transformation :f   by   k f k x   where   kx x which is known as 

sequence of interval numbers. kx denotes the thk  term of the sequence  kx x .  The set of all sequences of 

interval numbers is denoted by iw  can be found in [18 ].     

2. Definitions and Main Results 

Let  n n
  be a sequence of Young functions i.e. :n

   is an increasing and convex function such 

that   0n x   for 0x  and  0 0n  . The Musielak-Orlicz sequence space   is given by – 

                        : , 0n n nn
n

x x x   
 

     
 

  .This becomes Banach space under the 

norm(Luxemburg) 

                          inf 0 : 1, 0
n

n

n

x
x


  


   
     

   
           

        Let  k   be the sequence of Young functions. The space consisting of all those sequences  kx x in 

iw  such that  

 

1

0

k
kx




 
 

 
 
 

 as k  for some 0   is known as class of entire sequences of interval numbers defined by 

sequence of Young functions and is denoted by  . The space consisting of all those sequences  kx x in iw  

such that 

1

sup

k
k

k

x




  
  

   
   

  

 for some 0   is known as class of analytic sequences of interval numbers 

defined by sequence of Young functions and is denoted by  . 

                                    

                                              3. Main Results 
  

        Let   kx x  be sequence of interval numbers, p be positive integer,  nkA a  be non negative regular 

matrix and  k  be a sequence of Young functions, we define the following classes of sequences of 

interval numbers as follows :  

 

  ,
, , s

v r
A p    

 

1

,

: lim ,0 0

kp

ks
kv r

k nk
k

k

x
x x a d 



    
     

     
    

     

   

 ,
( , , )s

v r
A p    

 

1

,

: sup ,0

kp

ks
kv r

k nk
n k

x
x x a d 



           
       
            

  

  for some 0  . Where r and s be two non-negative integers and v = (vk) be a sequence of non-zero reals and 

 ( , )

s

v r kx =  1 1

( , ) ( , )

s s

v r k v r k rx x 

  and 
0

( , )v r kx  k kv x  for all k  N , which is equivalent to the following 

binomial representation: 

                                    ( , )

s

v r kx =
0

( 1)
s

i

k ri k ri

i

s
v x

i
 



 
  

 
 . 

We can specialize these classes as follows: 

 

(a) If  A I , the unit matrix then – 

http://www.jetir.org/


© 2022 JETIR June 2022, Volume 9, Issue 6                                                                         www.jetir.org (ISSN-2349-5162) 

JETIR2206755 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org h519 
 

 

                 
  ,

, , s

v r
I p    

 

1

,

: lim ,0 0

kp

ks
kv r

k
k

x
x x d 



    
     

     
    

     

 

                  ,
, , s

v r
I p    

 

1

,

: sup ,0

kp

ks
kv r

k

k

x
x x d 



           
       
            

     

(b) If we take  x x   then we get – 

  ,
, , s

v r
A p    

 

1

,

: lim ,0 0

kp

ks
kv r

k nk
k

k

x
x x a d



   
    

    
   

    

   

  ,
, , s

v r
A p    

 

1

,

: sup ,0

kp

ks
kv r

k nk
n k

x
x x a d



    
     

      
          

  

(c) If  nkA a is Cesaro matrix of order 1 and
kp p   then we have - 

                   ,
, s

v r
p    

 

1

,

1

1
: lim ,0 0

p

ks
n kv r

k
k

k

x
x x d

n





    
     

     
    

     


                                                                

    
 

1

,

,
1

1
, : sup ,0

p

ks
n kv rs

kv r
n k

x
p x x d

n
 



           
          
            

  

The space 
 ,

( )s

v r
   is defined as follows ; 

     

            
 

1

,

,
1

1
( ) : lim 0

ks
n kv rs

kv r
k

k

x
x x

n 


 
 

     
 
 

  for some 0  . 

Theorem 3.1: If 𝑑  is translation invariant then the class of  sequence   ,
, s

v r
p   is closed under addition 

and scalar multiplication of interval numbers.  

Proof: Let     ,
, s

k v r
x x p  

  
and       ,

, s

k v r
y y p  

 
In order to prove the result, we need to find some 

3 0   such that  

          
   

1

,

1 3

1
,0 0

p

ks
n k kv r

k

ax bx
d

n




   
    

   
   
    

    as  k   

Since    kx x p 
  
and      k

y y p  , there exists some 1 0   and 2 0   such that –  

         
 

1

,

1 1

1
,0 0

p

ks
n kv r

k

x
d

n




   
   

   
   

   

   as  k    and 
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1

,

1 2

1
,0 0

p

ks
n

kv r

k

y
d

n




   
   

   
   

   

   as  k  . 

Since   is non-decreasing, we have  

        
           

1 1 1

, , ,

1 13 3 3

1 1
,0 ,0

p p

k k ks s s
n nk kk kv r v r v r

k k

ax by ax by
d d

n n
 

   

         
            

          
         
            

                                              

   

1 11 1

, ,

1 3 3

1
,0

p

k ks sk k
n k kv r v r

k

a x b y
d

n


 

   
    

    
   

   

                                                        

   

1 1

, ,

1 3 3

1
,0

p

k ks s
n k kv r v r

k

a x b y
d

n


 

   
    

    
   

   

  

Take 3  such that  

              
3 1 2

1 1 1 1 1
min ,

p p
a b  

  
  

  

 

Then,  

        

1 1 1

, , , ,

1 13 1 2

1 1
,0 ,0

p p

k k ks s s s
n nk kkv r v r kv r v r

k k

a x b y x y
d d

n n
 

   

       
           

        
                 

                                                                                                

   

1 1

, ,

1 11 2

1 1
,0 ,0

p p

k ks s
n nk kv r v r

k k

x y
d d

n n
 

  

         
          

          
         

         

    

Hence    
    

1

, ,

1 3

1
,0 0

p

ks s
n k kv r v r

k

a x b y
d

n




   
     

   
        

  as  k  . 

This completes the proof. 

Theorem 3.2. The class of  sequence   ,
, s

v r
p   is a complete metric space under the metric ' 'h  defined by 

– 

                
 

1

,

1

( )1
, sup ,0

p

ks
n k kv r

n k

x y
h x y d

n




   
    

    
   

   

  

Proof. Let  
( )i

x be Cauchy sequence in   ,
, s

v r
p   

Then for any given 0   there exists a positive integer 1n  such that 

                 
    ,
i j

h x y          for all   1, .i j n
 

Therefore  
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1
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kn kv r v r
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x y

d
n

 


   
     

    
   

   
   

    for all   1, .i j n Consequently 
  i

kx is a Cauchy 

sequence in the metric space of interval numbers which is complete and  so 
 i
k kx x  as .i   

Once can find that -  
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1
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kis s
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x x

d
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1
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p

n ks
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k

x xx
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x
d

n

 
 




 



                                        

   
   

    
   

      

 



                                           

                                               

 

  0   as  .n    

Thus   
 

1

,

1

1
,0

p

ks
n kv r

k

x
d

n
 



   
   

   
   

   

  

and so      ,
, s

k v r
x p  . 

Hence    ,
, s

v r
p   is a complete metric space. This completes the proof. 

Theorem 3.3. Let   kx x  be sequence of interval numbers. The sequence class   ,
, , s

v r
A p  is complete 

w.r.t the topology generated by the paranorm h defined by –  

                    
 

1

1

,

1

sup ,0

kp M

ks
n kv r

nk
k k

x
h x a d 



    
    
     
         

  

Where max 1,sup .k

k

p
M

M

  
   

  
  

Proof. Obviously   0h   and    .h x h x   It can also be easily seen that 

     h x y h x h y    as d is translation invariant. 

     Now for any scalar  , we have   max 1,sup
kp

M  , so that  

   max 1,suph x  ,   fixed implies x  . Now let   , x  fixed for up 1s   , we have  
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  for some   N N  . 

Also for 1 n N   and 
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1
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1

,0

kp M
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x
a d  



    
    
     
         

  there exists m such that  

 

1

1

,

,0

kp M
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n kv r
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k m

x
a d


 



    
    
     
         

 . 

Taking   small enough, we then find  

                  
 

1

1

,

,0 2

kp M

ks
n kv r

nk

k m

x
a d


 



    
    
     
         

  for all k . 

Hence   0h x   as 0  . So h is a paranorm on  ,A p . 

To show the completeness, let 
  

( )

,

is

v r
x be Cauchy sequence in   ,

, , s

v r
A p  . 

Then for given 0  there exists positive integer r such that –  

              
   

1

1

, ,

,0

k

k k

p M

i j ks s

v r v r

nk

x x
a d  



    
      
     
    
         

  for all j  , .i j r  

Since d is translation invariant, so  

   
   

1

1

, ,

,0

k

k k

p M

i j ks s

v r v r

nk

x x
a d  



    
      
     
    
         

  for all , .i j r and each n. 

Hence  

       

   

1

, ,

,0
k k

i j ks s

v r v r
x x

d  


   
     

    
   

      

 for all , .i j r  

Therefore  ,
{ }

k

i
s

v r
x is a Cauchy sequence, consequently  

( )i

x  is a Cauchy sequence in the metric space of 

interval numbers which is complete and hence 
( )j

x x  as j 
 

Keeping 
0r r  and letting j  , once can find that – 

       
   

1

, ,

,0
k

i ks s
kv r v r

nk

x x

a d  


    
      
     
    

        

  for all 0 .r r  

Since d is translation invariant, therefore 
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1

1

, ,

,0

k

k

p M

i ks s
kv r v r

nk

x x
a d  



    
      
     
    
         

  

i.e  
( )i

x x  in  ,A p . It can be easily seen that    ,
, , .s

v r
x A p   

Thus   ,
, , s

v r
A p   is complete. This completes the proof. 

Theorem 3.4. If 0 inf 1k kp p    , then       , ,
, , ,s s

v r v r
A p A      . 

Proof.  Let     ,
, , .s

k v r
x x A p   Since 0 inf 1k kp p   , the result follows from the following 

inequality  

  

        
   

1 1

, ,

,0 ,0

kp

k ks s
k kv r v r

nk nk

k k

x x
a d a d 

 

         
          

         
         

         

   

 

Theorem 3.5. If 1 supk kp p     , then       , ,
, , , .s s

v r v r
A A p      . 

Proof.     ,
, .s

k v r
x x A   Since1 supk kp p     then for each      

0 < 𝜀 < 1  there exist a positive integer  𝑛0  such that 

      
 

1

,

,0 1

ks
kv r
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k

x
a d  



   
   

    
   

   

  for some 0 .n n  

The result follows from the following inequality  
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,0 ,0
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